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ABSTRACT

In this report the response of a moored body to current loadings
is investigated. A nonlinear analysis of the steady-state deflections of
bipod and tripod moorings Is made in Parts I and 11. The mooring ca-

bles are assumed to be extensible and are loaded with constant gravity
and current drag forces. It is shown that the cable weight-in-water is

a significant factor in the deflection limited design of a cable system.

In Part M the cable mooring system is represented by linearized

equations. Numerical integration is used to investigate the transient ro-
tat!onal and translational response of the moored body to changes in the

ambient current.
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THE ANALYSIS OF MOORING SYSTEMS AND RIGID BODY DYNAMICS

FOR SUSPENDED STRUCTURES

J. M. Gormally and R. Pringle, December 30, 1966

INTRODUCTION

This report bears on the static and dynamic response of suspended arrays and

their mooring systems to varying currents and initial conditions. The results of

these considerations play a part in the feasibility studies for different array con-

figurations described in Technical Report No. 13.V

Bipod and tripod mooring systems are first examined in some detail. It is

shown that a considerable increase in mooring rigidity may be obtained by using

neutrally buoyant cable, which reduces the sag in the individual anchor lines. In

treating the attitude dynamics of suspended arrays, the structures themselves were

assumed perfectly rigid. Numerical calculations are carried out for a tetrahedral

and a spherical array showing that these angular excursions due to realistic per-

turbing forces are indeed quite tolerable.

Part I

DEFLECTION ANALYSIS OF BUOYED BIPOD

AND TRIPOD CABLE SYSTEMS

In this report we present a deflection analysis of buoyed bipod and tripod

cable systems. The common cable point is subjected to buoyant lift and current

drag forces, and current drag and weight-in-water loadings on each cable are simu-

lated by a distributed loading that has constant magnitude and direction. These

loading conditions should provide a realistic measure of the steady-state deflections

of the bipod and tripod systems in a deep-ocean operating environment.

'F. T. Geyling, Technical Report No. - J, "Preliminary Concepts for Suspended
Underwater Arrays (U)," Bell Telephone Laboratories for Office of Naval Research,
Contract N00014-66-C0005, January 31, 1967, Confidential.



In Section 1 we review the basic solution for an extensible cable deflecting in

a plane under a gravity-type loading. Standard cable equations are developed into

numerically well conditioned expressions that apply when the total distributed load

is small compared with the tension in the cable. This basic solution is extended in

Section 2 to treat a single cable in three dimensions subjected to a constant distri-

buted load of arbitrary magnitude and direction. .

In Sections 3 and 4 this single cable analysis is employed in a synthesis of

the bipod and tripod systems. A Newton-Raphson iteration procedure is proposed

for the solution of the fundamental equilibrium and compatibility equations. The

cartesian components of the tensions at the common cable point are taken as the

fundamental unknowns, and formulas for the trial values are given.

A computer program for the analysis of the tripod system has been generated,

and some numerical results are reported in Part II of this report.

1. BASIC CABLE SOLUTION

In this section we review the solution for a single cable under a distributed

constant vertical loading. The deflected shape of the cable is referred to a cartesian

(X, Y, Z) reference frame (see Figure 1) and the end points ox the cable are desig-

nated as point 0 and point 1. The relative coordinates [i.e., (Y1 - Y0 ), (Z1 - Z0 )]

are expressed in terms of the reactions at point 1, the unstretched length of the

cable (L0 ), the distributed load (w), and the extensibility of the cable (k). The ex-

tended length of the cable is denoted by L.

1 1
44 1 t44L.

IL

Figure 1. Gravity-Type
_T_ *1122t Loading
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Defining the tensions T1 and TO,

1 [= 
()1/2

[ 2 w 1)/2 (2)t,o [ + (Pz -wL. ) ,
the relative coordinates may be determined from the following expressions:

or
00

T 1 2 k + i] 4

k=0

where

A : ( 7,)PZ (wL/2)A T1' T (5)

and

P ( Ti+Pz 6

or

- O) P y [L + (Z-z 0)] ik k (7)

k=0

where

B= w, 11 + (.zi - z0)/L
T1 + Pz (8)

The series expansions should be used to preserve numerical accuracy when A,

B 5 0.1.

The extended length oi the cable is given by

0) L 1 0 TL 1 - o,) + Py (x1  Y0)]. (

3



Remark 1

The equations have been derived under the assumption that the cable is ex-

tensible and that w is the distributed load on the cable in its extended (equilibrium)

position. They must be solved iteratively to obtain the extended length of the cable.

Remark 2

The modification of these expressions for determining the coordinates of

points along the cable is given in the appendix.

To synthesize cable arrays, we require the follow:ng pariial derivatives that

have been developed in compact form:

- (10)
P

-) (Z1 - zO (z -zl - ' (12)

(ie., L was treated as a constant). This restriction does not impair the effective-

ness of an iteration scheme applied to realistic cable systems because of the small-

ness of k.

2. SINGLE CABLE - ARBITRARY CONSTANT LOADING

In this section we consider the deflections of a single cable in three dmensions

subjected to a constant distributed loading of arbitrary magnitude and direction

(Figure 2). With these loading conditions, the cable will deflect in a plane deter-

mined by the distributed loading vector and the cable tensions. In this plane, the

basic cable expressions of the previous section apply (after an appropriate rotation

of the coordinate system).

A 4
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{ Figure 2. Cable In Three Dimensions

I Remark 3

We employ upper case letters to denote vectors, and b-.bscripts 1, 2, 3 to de-

I note their cartesian components in the fundamental frame (Figure 2).

I- _--! : : : :: , - .. " : I . . . : :

We proceed by introducing a set of unit vectors I, J, K. The K vector is selec-
ted so that it is in a direction opposite to the total distributed load W= (W: W.2, W3).

K ~ =KKKw I W 2  W3

Remr3

K ~ ( 1 KK 3 ) 7 Wi ' Iw WI / (14)
W =(W2 + W2+ W2'1/2. (15)

The unitnormalrtothe planendefined by Wandmthe cable tensionapoint

e= (Ply ce P b is given by

= ( K (16)

The triad is c')mpleted by defining

K (17)

Kx(PxK) P -1K(K-P)
I PxKI I P x K I

1 5



The cartesian components of the cable point 1 [R = (R1 ,R2 ,R3 )] are given in the

fundamental reference frame (Figure 2) by

R =oR + i (1- Y0) + K(I- z0 ) (i = 1,2,3). ()

Since the cartesian components of the vector P may, in the fundamental frame, be.

written as

Pi PYJi + PzKi (i = 1,2,3), (19)

we have
3 3

P Z PiJi, PZ PiKi. (20)

i=l i=1

To synthesize a cable network, we require the sensitivities of R to changes in

the reaction P. These quantities may be calculated from the following set of ex-

pressions (i, j= 1,2,3).

ýR ýJ ý• (Y 1 -YO) + JI1[=P (Y1 - Y0) + (ZI -Z) zu

3P 3[ Y -z(1- Y0) + ' (ZI- • W I (21)

where

3

Kz PY + (22)
i Kj WT 3N

i=

~P p K /i~ xI v XI PXK (23)

The partial derivatives of the scalar I P x KI are given by

IPxKI *-PxKI=-K -(P3  K )+ K(PIK PKj),

P x K, IPx Ki = +K( P~c P3K) + K, (PIK2  PK 1 ). (24)

E- !PxK-_L IP x KI -K2 P K3  P3 K2 ) +K,(P 3 K, -PIK 3)'

Remark 4

The complexity of the expressions (21) to (24) is of course caused by the de-

pendence of the vectors I and J upon the reaction P.

6j
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Figure 3. Bipod System

Remark 5

The quantities (Y1 - YO) and (Z1 - ZO) are calculated by the expressions in
Section 1. The quantities Py and PZ are provided by (20) and w = IW1. The un-

stretched length of €.able L 0 and the extensibility of the cable are assumed known.

In the following section, we apply the results developed in the present section
to the analysis of the bipod system.

3. APPLICATION TO THE BIPOD SYSTEM

The bipod cable system is illustrated in Figure 3, where the fundamental ref-
erence frame with unit vectors (il , is defined. Each cable in the system is

subjected to a constant distributed loading, and the buoyed joint is subjected to a

loading F (F 1 , F F3 ), which results from buoyant lift and current drag.

7



Let us adopt a sign convention for the forces based on the unit vectors (i 1 ,i 2 ,

L3) and designate the cable reactions at the tops of rables 1 and 2 by pi =(p -
p2 =\p2, -ý

2  respectively. The equations of equilibrium of the buoyed joint may then

be written as

C1  F- P1 - P2 = 0 (i = 1,2,3). (25)

The conditions for compatible displacement of the buoyed joint require that

C1+ 3 = R1- R2 = 0 (i = 1,2,3) (26)

where R1 E(Rý) and R2 = (R2) determine the joint position as calculated along cables

1 and 2, respectively, from the origin of the fundamental reference frame.

Equations (25) and (26) provide six equations for the six unknowns P 1 = (p1),p2 1 \•*
-= (Pi) (i = 1,2,3). We propose that these six equations be solved iteratively by

a Newton-Raphson procedure. Trial values of the quantities P 1 , P 2 are given at the

end of this section.

The Newton-Raphson mnethod requires the partial derivatives of the equations

of conditi-on Ck (k = 1,., 6) with respect to the unknowns 2), (i =1.2,3).
The required array may be written in the form

[Ck 5Ck (k =1, ... , 6) (27)

P il ' iJ (i =1,2,3)

Taking. the partial derivatives of (25) and (26) we have the results*

6Ci _ C b i_

1 1 P- = - 6 ij (i,j = 1,2,3), (28)

S1 3 0 2

Ci+3 i+ (ij1,2,3) (29)

The partial derivatives in (29) are provided by the expressions in Section 2.

In determining trial values for the cable reactions, it is convenient to ignore

the distributed loadings and base the estimates on the load F and the "swayed" geo-

metry of the bipod. Let us define E1 , E2 as the unit vectors along the legs of the

"swayed" bipod. The equilibrium of the buoyed joint gives

Fi - (IPlIE1 tI.P2 1E 2)= 0 (1= 1, 2,3). (30)

"..=I (i=j)

=0 (i j)

8
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If we solve these equations for IP1  and IP 2  the t-ial values are given by 1

I P1 IEI,...,. The "swayed" geometry is defined by the unit vectors
iF

E /l F

(31)
2 =F -d F3

ff- - •- " '• )

where

f= 2+ r321 2  (32)

Solving (3), we obtain

1 ( dF2,SPl 2 f 0 + (33)

IP 21 = I

4. APPLICATION TO THE TRIPOD SYSTEM

The analysis of the tripod system (Figure 4) parallels that of the bipod system

2-1in the previous section. The unlknowns are the cartesian components of the cable
reactions p 1 , p2 , p 3 , and the equilibrium of the buoyed joint is specified by the

equations
C=F- P- - 1 -P 2 - 3  (i=1,2,3). (34)

The conditions for the compatible displacement of the buoyed joint require that

S1 2C1+3=Ri - Ri' = 0

(i = 1,2,3), (35)
1 3

Ci+6 =R 1 - Ri- =

where 1Ri), (R2), and (Ri ) determine the joint position as calculated along cables

1, 2. and 3, respectively, from the origin of the fundamental reference frame.

The array of partial derivatives of the equations of condition (34) and (35) may

be written in the form

9
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Figure 4 Tripod System

k - c- (k =1,...9) (36)

- Tkig t5ei Pi 6 J (j = 1, 2,3)

TAldn thefo various partial derivatives of (34) and (35'v), we obtain

F= 1E (ij = 1,2,3), (37)

1 216Ci+3 6Ri ~Ci _ R 6i+3 ,(8

TC+ ;-p vR C~ ij=123. (39)
I P . j p3

j Ili2 P

As before, the partial derivaties in (38) and (39) are provided by the expressions
in Section 2.

In determining trial values for the reactions, it is convenient to ignore the
distributed loading and base the estimates upon the load F and the initial geometry
of the tripod. Let us define E, , Eas the unit vectors along the legs df the
tripod (unc~sturbed position). The equilibrium of the buoyed joizat gives

F 1 iIi 1 2 2 3 E3 )-O(0
F I JE 1+jP 1E1+IP IE l-= (1=1,12,3). (0

10



11 we solve these equations for the quantities IP 1 IP 2 i, IP P3 1, the trial values are
give by P1 

- 1P1 IE etc. For cable structures under consideration, the members,
of course, must al~wiaysbe intsi.

.~ . ....

.. . ..... ...

4-- h~ A

Figure 5. Symmetrical Tripod

For the case of the symmetrical tripod pictured in Figure 5, the unit vectors

are given by

El (d ,V~dh
\2L 0  2L 0  L 0

E 2L0 2L 0  L 0 ,/

E 3=(+d , 0 'L h

LD 10
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Using these values, we obtain

P LO0/d F1)V-
d1 -=•_h • 3 + 2" F ,)

,Pill =: 0 F3 -V F2 - F ) (42)

P3
1 = (•- F3 +!LF)

"5. CURRENT LOADING ON THE CABLES

In this section we present the expressions for calculating the current loading

on the cables. We assume that the basic theory for flow around rough cylinders

applies to the cables and that we may use the associated normal and tangential drag

coefficients.

Let us define E as the unit vector along the undisturbed direction of the cable.

We assume that the current forces act in a plane defined by this vector and the

stream velocity vector V = (V1 1V2 ,V3 ). We define a unit vector normal to the cable

and contained in this plane by the expression

N-Ex(VxE)-V- E(V- E) (43)IVxEl IVxEI

The components of velocity in the normal and tangential directions are given by

VT V • E,

VN V- N. (44)

Usig the standard drag expressions, the normal and tangential forces per unit

length are determined as

FN 1 C pdc (VN (45)

,and 2adFT =I CDT ( (46)

where CDN and CDT are the normal and tangential drag coefficients, respectively.

The cable diameter is denoted by dc, and p is the density of water.

The cartesian components of the current loading are given by

FTEi + FNNi (1 1,2,3). (47)

12
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6. SUMMARY

We have presented the fundamental equations for determining the steady-state

deflections of current loaded bipod and tripod cable systems. These equations were

developed under the assumption that the distributed current loading on the individual

) cables could be approximated by distributed loading with constant magnitude and

direction. Numerical experience with a practical tripod system showed that the

cable slope varies by less than 0.5 percent (even with large buoy drag loads), so that

this assumption is extremely good. Some material related to the present problem

may be found in other documents.•' 3

2!

SBasil W. Wilson, "Characteristics of Anchor Cables in Uniform Ocean Currents,"
Texas A&M Research Foundation Report No. 204-1, April 1960.

3W. T. O'Brien and A. J. Francis, "Cable Movements Under Two-Dimensicnal
Loads," J. Struc. Div. ASCE, June 1963, pp 89-123.

13
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Appendix

COORDINATES OF POINTS ALONG A SINGLE CABLE

The coordinates of points along a single cable may be obtained by a simple

modification of the equations in Section 1.

To find the stretched coordinates of a point S* on the unstretched cable, we

first solve (1) through (9) to obtain L. Then we employ the same equations, suhsti-

tuting [Pz - W(L - S)] for PZ' and S, and S* for L and L0 , respectively. The quantity

S clearly stands for the stretched location along the cable of the point S*. Equati-ons

(1) through (9),with the stated substitution, now yield [Y(S*) - Y 0 ] and. [Z(S*) - Z0 ].

14



Part II

) DEFLECTIONS OF BUOYED TRIPOD CABLE SYSTEMS
UNDER CURRENT LOADING

We present here some numerical results for the steady-state deflections of a

buoyed symmetrical tripod structure under current loading expected in a deep ocean

environment. The primary object of this study is to identify the most significant

factors in the deflection-limited design of buoyed tripod cable systems. As such,
the study is not intended to be a parametric investigation sufficient for the optimum

design of these structures.

The numerical results were generated by the SPIDER program on the GE
DSCS (Desk Side Computer System). This prograin employs the analysis given in

Part I of this report.

In Section 1 we review the symmetrical tripod geometry and delineate the
cable and loading parameters under consideration. In Section 2 we examine the ore-

liminary design of the cables and present data on the buoyant lift and current drag

forces on lithium-filled buoys. We also establish limits on the geometry of the tri-

pod and consider the design of neutrally buoyant cables.

The influence of the loading and cable parameter,; on the tripod deflections is

explored in Section 3. The cable weight-in-water was found to have a most signifi-
cant influence on the tripod deflections. The stiffness of the tripod increases sub-

stantially with a reduction of the cable weight-in-water (for fixed cable strength).

Certain generalizations relating to tripod deflection response are made in Section 4

and extensions of the present investigation are recommended.

1. BUOYED TRIPOD STRUCTURE AND LOADINGS

The geometry of a symmetrical tripod cable system is illustrated in Figure 6.

The base projections of the cable legs are separated by 120 degrees and the funda-

mental bent geometry Is specified by a height parameter h and a base parameter

d. The cables are defined by their diameters dc, unit weight-in-water w., extensi-

bility kc, and unstretched length L0 .

15
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Figure 6. Symmetrical Tripod

i ~ The loading on the tripod is defined by buoyant lift and drag forces on the .

buoyed joint and the current drag and weight-in-water loadings on the cable. The

range of buoy drag forces considered is an order of magnitude larger than the nor-

• ~mal buoy drag resulting from flow around a sphere. This extended range allows us

I _

B-i to examine deflections when a large structure is appended to the buoy, or when two

=• tripods are use-1 as anchors for a structure with connections at the buoyed joint.r

i ~Because we are interested in situations where the deflections are small coni-

• pared with the height parameter h, the current loadings on the cables are calculated

S~on the basis of the initial cable geometry. These forces are assumed to act in a

plane defined by the current velocity vector and the initial cable axis, and are re-
S~solved into normal and tangential components according to the usual theory of
S~flow around rough cylinders.4 The expressions used in the SPIDER program are

• given in Sec~ion 5 of Part I of this report. In the following section we consider the

•- ~preliminary de • of the cables in the tripod structure.

4Wllson, op ct

16

_IT



2. PRELIMINARY DESIGN

In the present version of the SPIDER program, cable sizing is performed on
the basis of initial tripod geometry and buoy lift force, using a factor of safety (FS)

of 3. This procedure has proved extremely useful, since the maximum cable tension
changes very litlt .vith the addition of buoy drag, cable weight, and current loading.

In Figure 7 we have plotted the variation in maximum cable tension (solid line)
due to the addition of buoy drag for various fixed-lift forces. The initial deoign ten-

sion is shown as the dashed line. We obeerve that the additional cable weight re-

lieves tension in the cables (this is accomplished by the increased cable slope at

the buoy).

ml4

-'IZ
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The initial cable size is selected on the basis of an empirical expression re-

lating ultimate cable strength Tu to cable diameter dc. This expression,

2..Tu = 70 dckips

(dc in inches), -

was obtained from Wilsons and checked against the data for 6 x 24 steel mooring

line in Baumeister. Cable weight-in-water for these cables is given by Wilson.

wc = 1.25 dc lb/ft.

The extensibility* (as defined in Part I) of these cables was estimated on the basis

of steel cross-sectional area by

6.67 x 10- (3)kc- 
2

dc

Considering only the buoy lift force F3 , the preliminary cable sizing for the sym-

metrical tripod was performed using the following expression

dc =[L O)h- F3-- _ _O (4)

where F 3 is given in kips. Actual cables were selected by rounding off this number

to the nearest cable size.

The expressions (1) through (4) are displayed graphically in Figure 8. For a

given lift force and factor of safety of cable design, we may obtain the preliminary
cable diameter and weight for various values of the ratio h/d.

2.1 Possible Bent Configurations

The bent configuration of a symmetrical tripod is specified by the height para-

meter h and the base parameter d. The expressions (1) through (4) may be employed

to show that for fixed h, d, the ratio K of buoy lift to total cable weight remains a

constant. Conversely, for fixed K the quantities h ard d must take restricted values.

5WUson, op. ci p. 47.
6T. Baumeister, Ed. Mark's Mechanical Engineering Handbook. New YorJ'
McGraw-Hill Book Co., 1958.

7Wilson, op cit., p. 41.
*The extensibility (kc) is the extension in feet over a one-foot length of cable per kip
of applied load.

18
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Fiur 8. Prlmnr Cal Design

To avoid collapse of the structure, we require K > 1 and this condition defines
the class of possible bent configurations. This criterion may be developed in the
form

h .> (xh~l/2 (h in feet),(5

where

x = 1.79 x 10o5 (FS) (K) (B)

=1.79 x 05 1

In developing (5) we have allowed for the variation in FS and incorporated the para-
meter B = (floated cable weight /cable weight- in-water) to allow for cable weight re-
duction by the use of floats. In this formulation the quantity 77 is a constant for a
given geometry h, d.
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The inequality (5) is displayed graphically in Figure 9 where h/d is plotted as
a function of h for various values of r, = (FS) (K) (B).

Example 1. Taking FS =3 and B =1, the possible bent configurations lie

above the 71 = 3 curve in Figure 9. If h =8000 feet, the base d must be less
than 8900 feet.
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2.2 Buoy Design

Very efficient buoy designs for deep ocean operations may be obtained through

the use of gasoline or lithium-filled spheres. As an example for which there is

some experience, we will confine our attention to lithium-filled spherical shells

-) (wall thickness 1/4 Inch) used in the Project Trident vertical array at Bermuda.

The lift and drag forces on these buoys may be approximated by the

e.voressLons

Lift 12 1d0/ (kips) (6)

Drag = 8.6 x 10-4 V2 db 2 (kips) (7)

where V is the current velocity in knots and db is the buoy diameter in feet.

To obtain a given lift force by the use of N buoys, the buoy diameter can be

selected by the expression

db = 4.67 / (ieet) (8)

Example 2. A lift of 100 kips may be obtained by using one buoy at 19.2 feet,

two buoys at 15.6 feet, or three buoys at 13.7 feet each. The respective drag

forces in a 1 knot current are 0.32, 0.42, and 0.48 kips.

The expressions (6) - (8) are displayed graphically in Figure 10. As indicated

previously, we consider a range of drag forces an order of magnitude larger than

those resulting from flow around a sphere (up to 10 kips).

2.3 Neutrally Buoyant Cables

In our numerical investigation we observed that cable weight was a significant

factor in the deflection response of the tripod. In this subsection we consider th'e

design of cylindrical floats concentric with the cable and spaced to provide an almost

neutrally buoyant cable.

2 If we consider floats with density pf and length L,. and use the expression

1.4 d~ Clb/ft (dc in inches) for the cable weight-in-air, the following; nondimensional

expression can be readily derived

df ( 4XK - K) 1/2 (9)

8H. M. Kruchten, Determination of the Drag-to-Lift Ratio for Spherical Buoys at
Depths to 15,000 Feet, Bell Telephone Laboratories unpublished work.
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Figure 10. i~ft and Drag Forces on Lithium- Filled Spheres

II

where df is the outer float diameter, X =L 2 /L.1 , L2 is the float spacing, and
K= Pf/Pw where Pwis the density of water •64 lb/ft3 .

The relation (9) is displayed in Figure 11 where df/dc is plotted as a function
of K = Pf'Pw for various values of the spacing-size prmtr

Example 3. For float material such as an epoxy-glass matrix 9 pf 45 lb/ft 3,

K• 0.7, a continuous coat (X = 1) would have an outside diameter of •2-1/2
inches for a 1 inch cable. The use of 1 foot long floats at a spacing of 10 feet
would require an outside diameter of 9 inches for a 1 inch cable.

9 JInterlm Report on Properties of Buoyant Materials and Structures, Proteus, Inc.,
:i) Contract NONtR-42.71(00), May 8, 1964.
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rJ
In the following section we examine the deflection response of a tripod to

(1) changes i, the cable and (2) loading parameters selected according to the ma-

terial of the present section.

3. PARAMETRIC INVESTIGATION )

In this section we examine the deflection response of a symmetrical tripod to

changes in the cable and loading parameters. This deflection response is character-

ized by the horizontal and vertical deflections cf the common cable joint. T-he cable

movements may be calculated once this is known, but results relative to these move-

ments are not presented.

Most of the results apply to a fixed tripod geometry 4000 feet high, and the or-

der of magnitude of the deflections (1 to 20 feet) should be interpreted relative to

this height. Our primary concern is the relative change in magnitude of these deflec-

tions with changes in the cable and loading parameters. Absolute magnitude of de-

flections should be interpreted carefully.

3.1 Current Velocity and Direction

For a fixed configuration (h = 4000 feet, d 4000 feet, Lift 100 kips) we have

ipvestigated the influence of current velocity and direction on the tripod deflections,

while varying the buoy drag independently. These results are illustrated in Fig-

ure 12 where the horizontal deflection is plotted as a function of buoy drag for vari-

ous values of current velocity and dir ection.

We observe two significant features:

1. The relative magnitudes of the deflections are not strongly dependent upon

current velocity and direction

2. For small values of buoy drag there is a "sway-back" of this structure

(i.e., the deflection is opposite to the current direction).

3.1.1 Remark 1. The "sway-back" phenomenon in a bipod may be illustrated by

a very simple analogy. Consider the combined gravity and current loadings on the

bipod cables in Figure 12b. The magnitude of the resultant loading on cable A is
greater than that on cable B. An analogous situation is illustrated in Figure 12c

where a weight (constant lift) is suspended by two light strings (A, B). If we push

on string A and pull lightly on string B as shown, the common joint will move to the

left; in effect, opposite to the current direction. As the buoy drag is increased, the

joint moves in the stream direction.
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Figure 12. Influence of Current Velocity and Direction

3.2 Cable Parameters

In this subsection we examine the deflection dependence on the extensibility
and weight-in-water wc of the cables. The most obvious result is the variation

invertical deflection under the lift force due to changes in kc. This situation is ill-
ustrated in Figure 13a where kc = 0 corresponds to inextensible cables and k.=

.3.3 x 10 .is roughly the value for 1-7/16 inch w steel hawsers. The most signifi-
cant feature displayed in Figure 13a is not the absolute differences in values ol the

21,
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vertical position but the dependence of the respective vertical deflections on the

buoy drag. This variation is quite small when compared with the results for the

horizontal deflection shown in Figure 13b.

Remark 2. We should remember that the nominal joint position is deter-
mined by the lift force and cable weight. Deflections from this position caused by
additional loadipgs and environment induced cnange. are items of interest.
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The effect of reducing the cable weight-in-v,,ater wc has considerably more

significant influence on the joint deflection than changes in kc* These results are

shown in Figure 14 where wc was varied while holding the lift and buoy drag constant.

The deflections corresponding to inextensible cables are given by the dashed lines,

and those corresponiding to kc = 3.3 x 10-5 are given by the solid lines. We observe

that for a buoy drag of 10 kips the effect of rendering the cable neutrally buoyant is

a decrease in horizontal deflection of approximately 10 feet or 80 percent.

-k.-...................................

. .. . . . . . .. .. .[ .††††††††††††††††††††i .. fI..v.L....".<•-.:--
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Figure 14. Influence of Cable Weight

Remark 3. The effect of cable weight on the horizontal deflections is the

most significant result observed in the preseni numerical studies. It would seem

that floated cables would be required in anplications where very small deflection

tolerances (~ few feet) are necessary and the buoy drag is appreciable (~ 5 kips).
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3.3 Buoy and Lift Drag

In Figure 15 we show the effect of changes in lift force on the deflctlon re-

sponse of the structure (for fixed buoy drag). The solid line refers to the situation

where the normal design weight of the cables is included in the calculation and the

dashed line assumes that neutrally buoy-int cables are employed.

lii:Ti;::! : i-:5* I-X:! -iaF r 7-:i!: • - i! : - -1

............. ........ .. . .. . .. •.... -

6 V I-F77

!.'; .- - '--- •;" ;;;; ;;.. ; -• ;"., '.. .4 .".• ,

~~~~~~~~~~~. . . . . . ....... ...... "' I... .... ... i!..I -•- -,

Figure 1h. Influence of Buoy Lift

It is seen that in the neutrally buoyant case the horizontal deflection is only

slightly dependent upon the lift force. Independent analytical and numerical checks

also indicate that the deflection depends very little upon the current loading.

Remark A. If buoy lifetime were a critical element in the system design.

floated cables and multiple buoys (say, three buoys providing 50 kips lift each) would

preserve the horizontzal deflection response of the structure against buoy failure

(see Figure 15).
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3.4 Geometr

In the deflection-limited design of a buoy tripod system we can look for the
minimum-deflection structure under specified loading conditions and fixed height.
The present study has not been extensive enought to investigate this situation when

cable weight-in-water is considered. However, for floated cable systems we can
S ) make some definitive statements.

An analytical investigation by the author for the tripod systems, ignoring dis-
tributed loadings, showed that the minimum-horizontal deflection structure has a
ratio h/d z 0.7. This result is almost independent of the height h, lift force, and

buoy drag.

We checked this result numerically for a tripod with fixed h, lift, and buoy

drag, considering current loading on the cables. The results for various h/d are
shown in Figure 16. We found that the minimum deflection did occur for h/d 0.7
but that this was a very weak mininru.m.

.... . . . .. ,. .

.4r~7j.7"•iw I

Figure 16. Influence of Gcometry

4. SUMMARY AND RECOMMENDATIONS

In this report we have examined the deflection response of buoyed tripods to
current loading, and identified the most significant factors that determine variations

in this response. We are presently developing an analytical solution for the tripod.
considering weight and current loadings. This will be available ior more extensive
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parametric studies and will allow a more complete investigation of the deflection

response to cable weight.

It is recommended that the proposed applications of buoyed tripods be deline-

ated more closely so that deflection-limiting criteria may be established. We also

suggest that variations in placement conditions affecting the symmetry of the tripod

be examined and that temporal variations ir. the loading conditions be considered.

A
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Part MI

DYNAMICS OF A MOORED RIGID BODY

Knowledge of the motions of a large, buoyant, rigid underwater structure is
important for underwater sound applications. In this report we consider such a

stcucture and its motions as determined by numerical quadrature of the linearized

equations of motion.

The purpose of a study of the dynamic response of large moored under later

structuiLs is to determine approximately the following properties: l) the "settling
time" required for the structure to adjust to changes in ambient current; (2) the

amplitude of attitude moticns in response to initial conditions or disturbances from
trawlers and ground motion; (3) the llnearlzed static displacements of the structure

when subjected to steady current loading.

To achieve these aims, we have neglected such factors as flexibility of the

structure and current loading on the anchor cables. These asstmrptions shouid not

alter the approximate response and are necessary for an efficient preliminary an-

alysis. The validity of the linearized equations of motion was established by

a posteriori checks.

1. ASSUMPTIONS

First; we set up a general dynamical description of an underwatir, moored

rigid body. Consider a body .0 with a cernter of mass C0 and a center of buoyancy

CB. Figure 1. shows the geometry of the body with the ith :nooring cable Ki in

place. An Inertial reference frame R is established on the ocean, bottom; the anchor
point of K, is denoted by PBi' a vector distance bi from R. The length vector of Ki

is Ii from PBi to PAl, the point of attachment of the cable and body Bo. The vector

from C, the cener of mass of BoT to PA, is p; the center of bucoancy CB is a
distance iB from Co. The buoyant force Wb, equal to the volume of B times the

density of water, is active at point CB.

The anguiar velocity of B0 expressed in a body-fixed reference frame is given

as w. The position r of C relative to R is broken into r' the static position and Ar

the dynamic displacement from equilibrium.
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2. EQUATIONS OF MOTION

The equations of motion of the system as defined are

Nc

I•=Ld x p Fi +W.bIB x (2)

m~~r D2:F'(bw) 1

i=1

where H I - w, I is the inertia dyadic. D, Ld are the hydrodynamic drag force and

moment, N Is the number of cables, and 3 is along the earth's radius. The forcemoment
F1 Is the force -.cting on the cable Ki.
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We must now compute F, D, L according to Il,; 'aws of physics and certain

assumptions. The geometry of the cable is given by -t r+ti -_bi.

3. MOORING FORCE

For a close approximation we neglect the weight and current reaction on the

cables. These effects are statically significant, but dynamically of secondary im-

portance compared with the longitudinal elasticity effect.* We apply Hooke's law to

the cable. The reaction force F on K1( is in the direction of the total length •. +

where now we use quantities at equilibrium plus their dynamic displacements; e.g.,
r° + Ar is written r + Ar. Figure 18 shows the simple geometry. The cable tension-

per-foot-deflection based on an unstressed length si is given as Ni. The "stressed

cable" reaction force is

F i, FN (Iti+ A?'I - ,si)f _

Ali +'ti

The static force is

F' N (It,i 4- sl)(4

Linearity and dhe notation

To= N _ ( 1 1. -si)

gives

AF-- 2 +0 T 3 (3)

2

up to or.ler i A.#i • The last term is small compared with the first.

4. HYDRODYNAMIC DRAG

The drag on an arbitrarily oriented cylinder is calculated. The cylinders are

then used to construct a large tetrahedron structure by joining four cylindrical

*In this report we are attempting to study d namic reactions of a structure to cur-
rent loading. Clearly the effects of current on e rigid body are largely due to
loading on the body itself; this is because of the relatively large area of the body.
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members at the origin (see Figure 19) by their ends and using tension members

(cables) to complete the structure.

The axis of the cylinder is given by a vector ri r r for the ith cylinder,

where r is the distance from one end of the cylinder and r a unit vector. The pre-

vailing current is given by the scalar v in a direction u (the carat denotes a unit
vector). Consulting Figure 19 we assume the current velocity vi composed of two

parts: v± perpendicular to and vi, along r Thus

vI=P I V'

where Pl = -_ r r) is a dyadic and ' is the unit dyadic.*

The drag force D' is an Integration of the form

D'= Pw Cd df i dI Ii
-2 2.yi .

where v p v and v is a summation of current and motion effects:

Thetorqe a ti

The torque about the origiii on the ith cylinder is

Ldi PwC dd a1 dr r1 ( I)Ii I
-- 2

The length of the cylinder is given by ai, the density of water by pw' the drag coef-

ficient by Cd, the cylinder diameter by d.

We then linearize Di and Ldi by assuming v >> I At{, 1 w x ri.

5. SIMULATION: TETRAHEDRON ARRAY

Consider a rigid tetrahedron composed of cylinders as shown in Figure 20.
The rigidity of the structure derives from cables in tension against large cylindrical

members. Cable mass and drag effects are ignored for the moment but can be added

*A "dyadic" is a pair of vectors (say _u and v) placed side by side. It has meaning
when another vector Is dot or cross multiplied by the dyad to form a vector or
another dyad, e.g., (uv) - P, or (uv) x P.
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Figure 21. The Tetrahedron
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to this rigid body analysis as changes in m, I, and the drag and drag moment equa-

tions, once 2 layout for guy wires and hydrophone suspensions has been specified.

We define a body coordinate frame with unit vectors lb, 2b, 3b describing the

axes. This system is oriented by angles along the 1, 2, 3 system (inertial frame)

for static equilibrium. The transformation matrix between a vector in 1, 2, 3 and

one in 1b, 2b. : 3b is Vi = C Vb, where VY and Vb denote representations of the same

vector in the 1, 2, 3 and lb, 2b, 3b systems, respectively. The equatior, of motion

(1) is expressed in the inertial frame and the equation (2) in the body frame.

The numerical integration of (1) and (2) was performed on the GE635 com-

puter for a specific tetrahedron structure, using the DEPAK integration package.

The vector operations were carried out automatically on the computer. Figure 21

shows the dimensions of the system studied. Figure 22 shows the top view of cable

geometry and the current direction,

Figures 23 through 32 show a series of computer-plotted response curves.

The odd-numbered figures are plots of the deflections Ax, Ay, Az versus time (in

seconds) and the even-numbered figures are of the angles yl, y2 ' y3 of rotations

about lb, 2b, 3b plotted versus time. The initial conditions: a one-knot current
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and no initial angles, deflections, or time derivatives of these. The variables _Ax,

.%y, Az go to an equilibrium configuration to accommodate various values of current

angle of attack X. The transients in attitude are in every case less than 1 degree.

There is a simple empirical law of deflection for the structure as shown in

Figure 33. The total deflection, (Atx)2 + -(Ay) is approximately con:tant at 17.5

feet for a one-knot current. The direction of this displacement is, to within a

few degrees, equal to X. For every CO degree interval in X the pattern repeats it-

self because of structural symmetry.

Figures 34 through 39 show plots of dynamic response with a one-knot cur-

rent and initial conditions on the angles* y1 = 0.01 (Figures 34 and 35), Y2 = 0.01

(Figures 36 and 37) and = 0.01 (Figures 38 and 39). The initial conditions are

imposed one at a time as can be seen from the rather marked attitude resoonse due

to the initialized angle. This attitude response shows noticeable damping in all

cases and the translatory defleci..on approaches 17 feet as before (here X =0).

6. CONCLUSIONS FOR THE TETRAHEDRAL STRUCTURE

The response! curves are nearly self-explanatory. The deflections do not

seem particularly large and the angular response, while not too well damped in ?l

and )2' seems to disappear in atbout 200 seconds. The angles excited by current

alone are remarkably small, irdicating the possibility of using such a structure as

the support for a set of array hydrophones.

7. SIMULATION OF THE MOTIONS OF A SPHERICAL STRUCTURE

The system to be discussed here is similar in many respects to the previous

moored, rigid tetrahedron.

The drag force (using the notation of Figure 17) is independent of attitude

angles. It is given by

2

D _ Ail) ( A

where R is the radius of the sphere, U is the current vector, and Ai' i. 'he sphere

velocity relative to the earth. The drag provides a constant force plus a damping

force. CD for the sphere was set equal to one.

*The angles 1 Y 2 , Y 3 represent infinitesimal rotations about Ib, 2b, 3b, re-
spectively.
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The mooring forces are provided by ten symmetrically spaced cables. These
cables havle identical size and spring constant as those used previously for the
tetra~hedron and are fastened at the ocean bottom. About 800 feet from the top, each
cable is joined to another cable of identical properties (see Figure 22). The main

lie is attached to the sphere at an elevation angle of 20 degrees above the sphere's
S~equator, while the lower branch of each anchor line is tied to the lower pole of the
i sphere, providing stability.

SFor the system simulated, the buoyant force was to be W B =2 x 105 pounds

and the center of buoyancy was located 250 feet above the geometric center of a 500

foot radius sphere. The mass of the sphere wa taken equal to the mass of the en-
closed volume of water, i.e., m = 0.8126 x 10 slugs. The moments of inertia of

a typical spherical envelope were calculated to be 0.196 x 1010 slug-feet squared.

Attitude damping equivalent to 10 percent was assumed to derive from internal parts
of the sphere moving through water, and perhaps some artificial dampers (e.g., fins).
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The direct integration of the equations of motion was quite time consuming

because of rapid attitude oscillations superimposed on the slow translational motion.

It was found, however, that very accurate results could be obtained for the trans-

lational motion by taking the attitude angles identically equal to zero. That is, the

small attitude motions usually encountered have a negligible effect on the transla-

tions and, thus, that part of the coupling could be ignored. Likewise, by assuming.(9

various fixed displacements of the mass center and integrating the attitude motion

over several cycles one can get a rather good approximation of the attitude motions.

in that manner, this part of the coupling was also alleviated.

Figures 40 through 43 show the translational motion resulting from digital

simulations. Figure 40 shows the .-A motion caused by sudden application of a 1/4

knot current to a sphere in equilib, saim. The slow response (with a period of about

1 hour! ) reflects the extremely large mass involved. The displacement is a small

fraction of the height above the ocean bottom. Figures 41 through 43 show the ef-

fects of a 1/2 knrt current under the same initial conditions at angles of incidence

A = 0, 12, and 24 degrees, respectively. The effects then repeat because of symme-

try. We note the rather slow and underdamped behavior. The displacements are

not, however, large. Possibly the number and/or size of the anchor cables can be

reduced.

Figures 44 through 49 give results for the simulation of attitude motions.

Figure 44 shows the effect of an initial displacement of 0.1 radian. ligures 45

through 48 show the attitude motions as excited by initial displacements of the mass

center A7. = 20, 40, 60, 80 feet, respectively. Note the rapid convergence to a static

reorientation and high-frequency oscillations. The steady-state angular displace-

ment is no greater than 0.04 radian. Figure 49 shows the attitude motions for in-

itial displacements Ax - 60 feet and Ay = 20 feet. This leads to angular displace-

ments about both the x and y axes.

It seems that steady-state angular displacements are somewhat greater for

the sphere than the tetrahedral structure, but still quite tolerable.
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